Latest from the Greatest

NASA all set for Artemis – Understanding the subsurface stratigraphy will be a crucial step

Since ancient times, people across the globe have been curious about the several celestial bodies like sun, moon, stars, comets, etc. This age-old curiosity has led to several fantastic and peculiar tales, but what it has also led to is a better understanding of the celestial bodies, space, and the science behind it. This information is beneficial in exploring deep space and all kinds of celestial bodies.

That’s one small step for man, one giant leap for mankind. – Neil Armstrong

It has been Forty-seven years since the last human-crewed mission to the moon. But now NASA has planned another manned mission to the moon’s South Pole by the year 2024 named “Artemis.” Artemis is a lunar exploration program that focuses on using new technologies to explore the entire moon’s surface. This program also focuses on using the resources (water and other minerals) that are available there, for a longer duration of exploration. All these technologies need to be ‘OK Tested’ before sending a manned mission to Mars.

(Source: nasa.gov)

To make this mission successful, optimal utilization of the resources already present at the celestial body is very vital. One of the most critical resources that need to be utilized is water, for making fuels and other consumable products required for extended space exploration.

So to go to any celestial bodies like moon or mars, or deep space exploration, it is very crucial to spot the water availability on that planet or satellite, whether it is in solid form (ice) or vapor form. So that a landing a site can be decided based on it.

In a recently published patent application (US20190101639A1) filed by NASA, they disclose an advanced spaceborne Synthetic Aperture Radar (SAR), which can be attached to the spacecraft. It takes 2D as well as 3D images, such as the landscape of the selected area, which is far superior to the conventional beam scanning radar. The Synthetic Aperture Radar (SAR) provides a fine resolution image of subsurface stratigraphy (branch of geology concerned with the study of rock layers used in the study of sedimentary and layered volcanic rocks.) which can reveal the geologic history of the planetary surface. The apparatus disclosed in this application uses a long-wavelength signal that penetrates the surface and identifies the buried ice and water, that can help in locating a habitable area on other planets and satellites.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.